Uranyl and arsenate cosorption on aluminum oxide surface

نویسندگان

  • Yuanzhi Tang
  • Richard J. Reeder
چکیده

In this study, we examined the effects of simultaneous adsorption of aqueous arsenate and uranyl onto aluminum oxide over a range of pH and concentration conditions. Arsenate was used as a chemical analog for phosphate, and offers advantages for characterization via X-ray absorption spectroscopy. By combining batch experiments, speciation calculations, X-ray absorption spectroscopy, and X-ray diffraction, we investigated the uptake behavior of uranyl, as well as the local and longrange structure of the final sorption products. In the presence of arsenate, uranyl sorption was greatly enhanced in the acidic pH range, and the amount of enhancement is positively correlated to the initial arsenate and uranyl concentrations. At pH 4– 6, U LIIIand As K-edge EXAFS results suggest the formation of surface-sorbed uranyl and arsenate species as well as uranyl arsenate surface precipitate(s) that have a structure similar to trögerite. Uranyl polymeric species or oxyhydroxide precipitate(s) become more important with increasing pH values. Our results provide the basis for predictive models of the uptake of uranyl by aluminum oxide in the presence of arsenate and (by analogy) phosphate, which can be especially important for understanding phosphate-based uranium remediation systems. 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced uranium sorption on aluminum oxide pretreated with arsenate. Part II: Spectroscopic studies.

In a companion study, we demonstrated that pretreatment of gamma-alumina surface with arsenate enhances uranyl uptake under acidic conditions, where uranyl otherwise sorbs poorly. Here, we examine the local structure and long-range order of the sorption products by using X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD). Arsenate was chosen for the pretreatment because of its high...

متن کامل

Enhanced uranium sorption on aluminum oxide pretreated with arsenate. Part I: Batch uptake behavior.

We explored mechanisms for increasing U(VI) sorption by pretreating alumina surfaces with arsenate, which has a high affinity for binding with uranyl and is an analog for phosphate. Batch experiments were conducted at pH approximately 4 by pretreating a gamma-alumina surface with arsenate, followed by the addition of uranyl. Parallel experiments were conducted with different alumina loadings as...

متن کامل

Competitive sorption of Ni and Zn at the aluminum oxide/water interface: an XAFS study

Trace metals (e.g. Ni, Zn) leached from industrial and agricultural processes are often simultaneously present in contaminated soils and sediments. Their mobility, bioavailability, and ecotoxicity are affected by sorption and cosorption at mineral/solution interfaces. Cosorption of trace metals has been investigated at the macroscopic level, but there is not a clear understanding of the molecul...

متن کامل

Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides.

The highly ordered mesoporous silica media, SBA-15, was synthesized and incorporated with iron, aluminum, and zinc oxides using an incipientwetness impregnation technique. Adsorption capacities and kinetics of metal-impregnated SBA-15 were compared with activated alumina which is widely used for arsenic removal. Media impregnated with 10% of aluminum by weight (designated to Al10SBA-15) had 1.9...

متن کامل

Formation of metal-arsenate precipitates at the goethite-water interface.

Little information is available concerning cosorbing oxyanion and metal contaminants in the environment, yet in most metal-contaminated areas, cocontamination by arsenate [AsO4, As(V)] is common. This study investigated the cosorption of As(V) and Zn on goethite at pH 4 and 7 as a function of final solution concentration. Complimentary extended X-ray absorption fine structure (EXAFS) spectrosco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009